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Abstract

In this paper we deal with a common problem found in the operations of security
and preventive/corrective maintenance services: that of routing a number of mobile
resources (vehicles) to perform foreseen and unforeseen tasks during a shift. We
define the (Stochastic Service Team Orienteering Problem) SSTOP as the problem
of making a routing strategy to maximize the expected weighted number of tasks
served within the specified time-windows. To obtain solutions to this problem, we
propose to solve successively the Coverage Team Orienteering Problem with Time
Windows (C-TOPTW). The C-TOPTW considers information related to known
tasks and also information about the arrival process of new unforeseen tasks. We
find that the information about the arrival process of new unforeseen tasks is of
value in generating routes for vehicles to maximize the expected proportion of tasks
accomplished within the specified time windows.

Key words: Routing, location, reliability, distributed services.

1 Introduction

The domain of geographically distributed security services and preventive/
corrective maintenance services involves the task of routing mobile resources
(e.g. field engineers, security guards) over a number of sites so that various
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services can be performed. While the clients are mainly concerned with receiv-
ing timely and reliable services so that their security/maintenance problems
are solved effectively, the operational managers of the service providers are
mainly concerned with offering competitive and profitable services. In a com-
petitive environment, where the firms choose to differentiate themselves from
competitors by focusing on service quality, rather than on costs, responsive-
ness is one of the most important quality dimensions of service operations.
Responsiveness in security/maintenance contexts means that the clients’ se-
curity/maintenance concern is being dealt within specified time windows.

The time windows depend on the type of service/task to be performed. We
distinguish between two kinds of tasks: foreseen tasks which are known in
advance at the start of a shift and unforeseen tasks which are only known at
the time an alarm is triggered. While foreseen tasks involve routine activities
such as verification of alarm systems or preventive maintenance, unforeseen
tasks are emergency related activities addressing critical situations such as a
robbery or a failure of an important piece of equipment. As a result, in the case
of foreseen tasks, the latest allowable starting times are specified in advance
upon request of the client, whereas in the case of unforeseen tasks, these are
defined by a given standard response-time which is a service-guarantee that
can be easily understood (for a discussion on service guarantees see Hart,
1988).

Operational managers and/or dispatchers have the task of ensuring that the
routing decisions, which are taken before the start of a shift, and the re-
routing decisions are such that they allow servicing as many foreseen and
unforeseen tasks as possible within the specified time-windows and within
the shift’s length. Although we acknowledge that there are several sources
of uncertainty in the distributed services domain, such as non-deterministic
travelling times or task service durations, we restrict our study to the main
source of uncertainty: that of the release of unforeseen tasks. Hence, in this
paper we study the challenge of (re-)routing when dealing with (un)foreseen
tasks so as to meet specifications of service contracts and offer reliable and
timely services. Un- foreseen tasks generally involve emergencies where fast
reactions are needed. These are considered of higher priority than foreseen
tasks.

To deal with incomplete information in terms of the tasks known in advance
we introduce a new problem that we name the Stochastic Service Team Ori-
enteering Problem (SSTOP). In contrast to the multiple traveling salesman
problem with time windows (m-TSPTW) (Mitrovic-Minic, and Krishnamurti,
2006) the SSTOP deals with two types of tasks and recognizes that it is not
always possible to guarantee that all tasks will be served within the time win-
dows when unforeseen tasks are released simultaneously. Hence, the objective
of the SSTOP is to maximize the expected number of tasks that are serviced
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by mobile resources within the specified contractual deadlines. Consistent with
the vehicle routing literature, we use the general term “vehicles” to refer to
the mobile resources within vehicle.

The SSTOP problem may be stated as follows: a planner must decide on the
sequence of tasks a number of vehicles must be serviced within a given shift.
The tasks are located in sites on a plane and each task has time-windows
indicating the time at which a task is allowed to start to be serviced. In addi-
tion, emergency events may occur within the shift in any of a set of candidate
set of sites according to a Poisson process with sampling. Each emergency
event generates an unforeseen task and such task can only start to be serviced
within a certain amount of time counting from the time the emergency event
occurs. Each task has an associated weight indicating its importance, where
unforeseen tasks have a higher weight than foreseen tasks.

To solve the SSTOP, we propose to solve successively a static bi-objective
problem. The first criterion uses complete information about known tasks.
It aims to serve as many known weighted tasks as possible within the given
time-windows and a given shift by using a variant of the Team Orienteering
Problem (Golden et al. 1996). For a recent review on the Orienteering Problem
and its variants see Vansteenwegen et al. (2011). The second criterion uses the
incomplete information about unforeseen tasks. It is assumed that the stochas-
tic process that generates these tasks is known. It recognizes that although
the arrival time of unforeseen tasks is not known a-priori, it is important to
know the risk that a certain set of vehicle routes implies. To evaluate such
a risk, we extend Church and Revelle’s (1974) Maximum Coverage Location
Problem (MCLP) where it is possible to identify which sites are covered so as
to serve potential requests of unforeseen tasks on time.

In the original version of the MCLP, the problem is applied to static coverage
situations where emergency vehicles (e.g. ambulances) return to their bases
immediately after serving every unforeseen task. Hence, only the fixed location
of the base is relevant to identify which sites are covered. In contrast, the
extended MCLP version we propose is applied to dynamic coverage situations
where vehicles have to modify their routes to accommodate new unforeseen
tasks without having to return to the base, implying that the location of
each vehicle at each point in time is relevant for identifying the sites being
covered and therefore must be updated. The location of vehicles can now be
identified using the tracking capabilities of GPS that is already being used in
the geographical distributed services domain. By incorporating the proposed
extended MCLP model as the second criterion, we investigate the added value
of the information that the arrival process can bring for the design of more
reliable routes. To our knowledge, there is no available literature that deals
with the combination of routing and location models where the location refers
not to static bases or sites but to the vehicles themselves.
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A number of related problems exist in the literature. First, we differ from
Weintraub (1999) that also deals with unforeseen tasks (but without foreseen
tasks) in that we focus on the fulfillment of contracts that define time win-
dows and maximum response times rather than on simply minimizing response
times for all tasks. By considering also unforeseen tasks of a generally higher
priority than foreseen tasks, the routes will be modified accordingly such that
the risk of not being able to serve an unforeseen task is minimized. Second,
our situation is different from the Orienteering Problem with stochastic profits
(Ilhan et al., 2008) in which a continuous distribution of profits is associated
to each site and that it is independent of the time at which it is served. An-
other related problem is that of the Probabilistic Traveling Salesman Problem
(Jaillet, 1985) where a route is designed a-priori and only a subset of the sites
will eventually be needed to be served by a probabilistic process. It differs
from our problem in that we require a service time guarantee in servicing
the unforeseen tasks and that a number of foreseen tasks are also known in
advance. Other variants of stochastic Orienteering problems exist where the
length of the routes are stochastic instead of the profits and thus a balance
must be struck between the probability that a tour remains feasible and the
objective value of such a feasible tour (Evers et al., 2011). In our case, to
service an unforeseen task is only profitable for a given time window (between
the release time of the unforesen task and the maximum allowable time to be
able to serve it).

This paper is organized as follows. In Section 2, we describe the SSTOP and
its assumptions. In Section 3, we outline the multi-criteria problem; while
in Section 4 we provide a heuristic to solve it. In Section 5, we present the
set-up of a series of simulation experiments used to evaluate the effectiveness
in using coverage considerations in solving the SSTOP. The results of these
experiments are reported and discussed in Section 6. Conclusions of the paper
are given in Section 7.

2 The Stochastic Service Team Orienteering Problem (SSTOP)

The Stochastic Service Team Orienteering Problem consists of a number of
sites where tasks need to be served. These tasks may be of foreseen type
(i.e. known in advance at the start of a shift) or of unforeseen tasks (i.e.
tasks may be originated at sites during the shift where the scheduler has no
knowledge about them before they are originated. Thus, in the SSTOP, we
start the shift with a schedule for foreseen tasks and then this schedule can be
modified at any moment as soon as new (unforeseen) tasks become available.
In the following, we describe the dynamic characteristics of the SSTOP as a
problem with incomplete information and then provide a precise definition of
the SSTOP. To conclude, we illustrate the dynamics of the SSTOP with an
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example.

2.1 General assumptions

We assume that the traveling times between sites and two points in the plane
are deterministic and that the durations of both foreseen and unforeseen tasks
are known beforehand. Furthermore, we assume that all sites may be reached
from any other location.

During a shift of length TT , all the vehicles start at a base and have to
return to the base at the end of the shift. Moreover, we assume that a single
dispatcher schedules each vehicle and that vehicle is able to serve any task. In
this problem setting, the fixed information of the SSTOP (i.e. known at any
point in time) is given by the following:

I : the set of sites,
K : the set of vehicles,
δ : the system-wide standard response time indicating the time available to

start serving an unforeseen task since its release,
Pi : is the probability that if an unforeseen task is generated,

such unforeseen task will be located in site i1 ∈ I,
µ : the fixed duration of any unforeseen tasks generated,
∆n : the fixed duration of task n, when the task is of unforeseen type ∆n = µ,

otherwise ∆n is a fixed value known at the start of the shift.

2.2 Tasks

The services delivered by vehicles are a series of tasks. Every task n ∈ N
has the following tuple associated to it: ℘n = (L(n), wn, rn,∆n, en, ln) where
L(n) = i : i ∈ I is the site at which the task is to be performed, wn is the
importance of servicing the task, rn is the release time at which the task is
known to the dispatcher and en and ln are the earliest and latest allowable
starting times respectively. Note that the release time allows to distinguish
between a foreseen and an unforeseen task. If rn = 0 the task n ∈ F is of
foreseen type and if rn > 0 the task n ∈ U is of unforeseen type (note that
F ∩ U = ∅). The location of a site is mapped to an Euclidean space with a
function LS such that LS : I 7→ R2.

Without loss of generality, we assume that unforeseen tasks are generated
with a Poisson process with intensity λ, that the duration of these are known
and constant µ (i.e ∆n = µ, n ∈ U) and that the importance of unforeseen
tasks is assumed fixed in advance with a constant value of wE ∈ R+, thus,
wn = wE, n ∈ U . Note that given the importance of servicing unforeseen tasks
generated by emergency events, in general wE > wn if n ∈ F .
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Using a poisson sampling process, we may introduce heterogeneity in the rel-
ative probability that an unforeseen task will be generated in a given site. For
such purpose, we introduce vi to denote the probability that an unforeseen
task will be originated at site i ∈ I if an unforseen task is generated. The
starting time windows are also derived differently for each type of task. While
for foreseen tasks, en and ln are determined a-priori, for unforeseen tasks these
are determined with the following relations: en = rn and ln = rn + δ.

2.3 Valid schedules

In the SSTOP, the main task of a central dispatcher is that of defining valid
schedules for each of the vehicles available. However, as new information is
available each time a new unforeseen task is released, new schedules need to
be devised each time the set of unforeseen tasks is updated with additional
unforeseen tasks that are originated and become known to the scheduler. We
use the index j ∈ J to denote the dates at which the list of already released
unforeseen tasks is updated. To reflect the incomplete information nature of
the SSTOP problem, we define TKj as the set of tasks for which service has
not started at or before the j-th unforeseen task has been released. Note we
use j = 0 to denote the start of a shift before any unforeseen task has been
released (i.e. there has been no emergency event yet). A valid schedule at
instant j is then defined as follows.

Definition 1: A valid schedule for a vehicle k ∈ K at a given evaluation
instant j ∈ J , is defined as an ordered set of known pending tasks denoted
by Π

(k)
j ⊆ TKj to be accomplished by the vehicle that fulfills the following

dynamic conditions.

(1) The vehicles start in the home base (common to all vehicles, i.e. i=b)
at the start of their shift and otherwise a known location evaluated at
any other time before the end of the shift according to previously sched-
uled routes. The vehicles must end their shift at the base (i.e. i=b); and
can only service tasks that allow them to return to the base before the
termination of their shift at t=TT.

(2) Each task included in the schedule must start within the service starting
time windows: [en, ln].

(3) Once a task is executed, the vehicle re-allocates immediately to service an-
other task or returns to the base. If the vehicle arrives at a site before the
corresponding earliest allowable starting time, it is assumed that it waits
just outside the premises of the site until the earliest allowable starting
time,en time at which it starts servicing the task.

(4) If a vehicle is en-route to service an unforeseen task, it can not be re-
allocated to another task until it finishes servicing the unforeseen task.
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(5) If a vehicle is servicing a foreseen or an unforeseen task, such a vehicle
can not be re-allocated to serve another task until the vehicle finishes
servicing its current task.

The first two conditions enforce that vehicles start servicing tasks within the
specified time windows so that the vehicles are able to return to the base before
the end of the shift. The third condition is used for simplification purposes
where a sequence of tasks fully determines the actual position of vehicles
at given time instants. The last two conditions assure that immediate re-
allocation is allowed only in the case a vehicle is traveling to serve a foreseen
task so that the clients remain unaware of service interrupts.

Since we assume that the time to transfer between sites is pre-determined, it is
possible to know in advance if a released task can be started within the given
time window. Note that the SSTOP’s objective only counts the tasks served
within the specified time-windows. Tasks that are known to be impossible to
be serviced within time windows are never scheduled and/or serviced.

2.4 Information set and strategy

At the start of the shift or when an unforeseen task is released, updated in-
formation is available to the dispatcher to generate new schedules. The infor-
mation set, Ij, at evaluation instant j ∈ J , includes the updated information
of the tasks available for servicing as well as information about the current
situation of every vehicle k ∈ K.

Ij = (TKj,
⋃
k
V L

(k)
j ,

⋃
k
V S

(k)
j ,

⋃
k
LT

(k)
j

⋃
k
LL

(k)
j ) (1)

We use the following notation.

V L
(k)
j : the actual location of vehicle k ∈ K in the Euclidian plane

at evaluation instant j ∈ J ,

V S
(k)
j : identifies the state at which a vehicle k is at evaluation in-

stant j ∈ J such that:

V S
(k)
k = 1 if vehicle k is traveling to serve an unforeseen task,

2 if vehicle k is currently servicing a (un)foreseen task,
3 if vehicle k is traveling to serve a foreseen task, trav-
eling back to the base, or waiting at a site to serve a
foreseen task,

LT
(k)
j : the first time at which a dispatcher can reschedule a vehicle

k given the current time at evaluation instant j ∈ J in

accordance with the conditions defined in Definition 1 ,
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LL
(k)
j : the location of the vehicle k ∈ K at time t = LT

(j)
k in

the Euclidian plane. If the vehicle is traveling to serve a

unforeseen task, i.e. V S
(k)
j = 1 then, the location will be

that of the unforeseen task the vehicle is traveling to, i.e,

LL
(k)
j = LS(L(n)). Otherwise, the location of the vehicle

would be the same as the location at instant j ∈ J , i.e.

LL
(k)
j = V L

(k)
j , the site in the Euclidian space at which the

vehicle k ∈ K is traveling to at evaluation instant j ∈ J .
Alternatively, if the vehicle is not traveling, it identifies the
location of the site at which the vehicle is at evaluation j ∈
J .

We define a strategy as a mechanism that generates valid schedules for each
vehicle upon the occurrence of each event (i.e. a request to serve a new unfore-
seen task). More formally, by defining a system schedule Γj as the collection of

all valid vehicle schedules Π
(k)
j at a given evaluation instant, i.e. Γj =

⋃
k∈K

Π
(k)
j ,

we define a strategy as follows:

Definition 2: A strategy denoted by s is a function that maps the information
set at a given evaluation instant j ∈ J to a system schedule: s : Ij → Γj.

2.5 Performance evaluation

To evaluate the quality of the schedules generated by a given strategy during
the realization of a certain shift, we introduce the concept of weighted fulfil-
ment yield which is in-line with the service operational managers’ objective
of servicing as many tasks as possible while recognizing that not all the tasks
are of equal importance.

Definition 3: The weighted fulfilment yield, Ψ, is a random variable defined as
the weighted proportion of tasks n ∈ N (weighted by wn) that are completely
serviced within their time-windows during a shift [0, TT ].

As a problem with incomplete information, the objective of the SSTOP is to
maximize the expected weighted fulfilment yield γ over all possible realizations
of unforeseen tasks in a shift. Therefore, we define the SSTOP as follows:

Definition 4: The objective of the SSTOP is to devise a strategy s ∈ S for the
allocation and re-allocation of vehicles to tasks so that the strategy maximizes
the expected weighted fulfilment yield E(Ψ) during a shift.

Recall that the expected weighted fulfilment yield, E(Ψ), considers that un-
foreseen tasks arise following a Poisson process with intensity λ and that the
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Table 2
Initial information available of basic example.

Task index {Site Location} 1{a} 2{b} 3{c} 4{d} 5{e} 6{f}
X-coordinate (km) -1.0 1.0 -1.0 1.0 -1.0 1.0
Y-coordinate (km) 1.0 1.0 0.0 0.0 -1.0 -1.0
Earliest allowable starting time (hr) 2.0 1.0 1.0 5.0 0.5 2.5
Latest allowable starting time (hr) 5.0 7.0 9.5 8.5 3.5 4.5
Duration shift (hr) 12.0
Duration of foreseen ∆n {unforeseen
µ} tasks (hr)

1.0{1.2}

Relative importance of foreseen
{unforeseen} tasks

16.7%{100%}

Mean rate of unforeseen tasks (#
tasks in [0, TT − µ])

1

Speed of vehicles (km/hr) 1
Response time standard δ (hr) 1.5

probability that the unforeseen task is located at a given site is given by Pi
for every i ∈ I. The constraints of this incomplete information optimization
problem are stated implicitly by constraining possible solutions to strategies
that generate only valid schedules.

2.6 Risks inherent to routes

To illustrate the SSTOP, consider the next example where the information
initially available is given in Table ??. There are six sites and a base at co-
ordinates (0, 0) which are fully connected. Further, assume that two vehicles
are available and that the number of unforeseen tasks that occur in a shift are
Poisson distributed with an equal likelihood of being located at any site.

For illustration purposes, consider two alternative solution sets as an initial
schedule for the SSTOP. In Solution Set A, vehicle 1 follows an anticlockwise
pattern visiting the sites in the sequence b-a-c, while vehicle 2 also follows
an anticlockwise pattern visiting the sites in the sequence e-f-d. Solution Set
B differs from Solution Set A only in the route of vehicle 1 that visits the
sites in a clockwise manner in the sequence c-a-b. Both sets of plans are
feasible solutions, fulfilling the corresponding time windows and returning to
the base before the end of the shift (see Table ??). If no alarms occur during
the duration of the shift then it is clear that both solution sets serve all the
foreseen tasks achieving a 100% weighted fulfilment yield. However, unforeseen
tasks do occur and hence it is worth verifying if both sets of plans yield also
the same risk.

To assess such a risk, it is useful to track the positioning and state of the
vehicles at different instants. While in Solution Set A (see Figure 1(1A)) both
vehicles tend to be positioned in opposite sides at the same instants, in Solu-
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Table 3
Arrival times to sites in time units and base per vehicle and solution set.

Solution Set - Vehicle 1{a} 2{b} 3{c} 4{d} 5{e} 6{f} Base

Solution Set A: Vehicle 1 4.41 1.41 6.41 - - - 8.41
Solution Set B: Vehicle 2 - - - 6.41 1.41 4.41 8.41

Solution Set A: Vehicle 1 3.00 6.00 1.00 - - - 8.41
Solution Set B: Vehicle 2 - - - 6.41 1.41 4.41 8.41

Solution Set A

a b

c d

e f

ab

c d

e f

Solution Set B

base base

b-a-c

e-f-de-f-d

1. Coverage at t=7.50 hrs given initial plan defined at t=0 hrs. 2. An alarm occurs at t=7.50 hrs at site a.

Area of coverage provided by Vehicle 1

Area of coverage provided by Vehicle 2

Alarm occurring at Site A

Vehicle 1

Vehicle 2

Solution Set A

a

c d

e f

ab

c d

e f

Solution Set B

c-a-b b-a-c

b

c-a-b

e-f-d e-f-d

Unable to attend 
alarm at site a

Fig. 1. Coverage of vehicles for unforeseen tasks.

tion Set B (see Figure 1(1B)), the vehicles are located in the same side (i.e.
left or right) of the graph. If we then draw a circle with radius δ = 1.5 hrs
(the response time standard) centered in the position of each vehicle, we can
identify the sites that can be reached on time if an unforeseen task is released
and thus gain insight about the inherent risks to routes.

For example, at time instant t = 7.50 hrs Figure 1 shows that while Solution
Set A covers all the sites (Figure 1(2A)), the Solution Set B (Figure 1(2B))
does not cover sites a, c and e. If, for example, an alarm occurs at site a at
t = 7.50 hrs, vehicle 1 in Solution Set A will be able to serve it returning to
the base on time. However, none of the vehicles in Solution Set B will be able
to serve the alarm because these are located too far from the site as shown
in Figure 1(2B). In the case only one unforeseen task is released at site a
at t = 7.50 hrs during the shift, then Solution Set A provides a Ψ = 100%
of fulfilment yield. In contrast, Solution Set B, provides only Ψ = 50% of
fulfilment yield. Thus, given the higher number of sites covered in time of
Solution Set A because of the increased separation of vehicles compared to
Solution Set B, it is reasonable to choose Solution Set A over Solution Set B
on the grounds of being a less risky choice.

The example illustrates that for obtaining higher fulfilment yields it is im-
portant to design routes that serve as many known tasks as possible, while
maintaining at the same time the capacity of vehicles to handle unforeseen
tasks on time by covering most sites throughout the duration of the shift. The
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next section deals with how to address the complete and incomplete informa-
tion aspects of the SSTOP.

3 A valid strategy for the SSTOP: the C-TOPTW

In this section we present a multi-objective optimization problem to be solved
successively each time a new unforeseen task is generated at instants j ∈ J . We
call such a multi-objective problem the Coverage Team Orienteering Problem
with Time Windows (C-TOPTW). The problem is in itself composed of two
sub-problems, each with its own objective function to be solved at instants
j ∈ J : (1) the Team Orienteering Problem with Time Windows (TOPTW)

with objective function Z
(j)
S1 ; and (2) the Time-averaged Maximum Coverage

Location Problem (TACMLP) with objective function Z
(j)
S2 .

The TOPTW addresses the known tasks by maximizing the weighted number
of tasks served on time while the TAMCLP, addresses the stochastic process
of the arrival of new unforeseen tasks by maximizing the capacity of vehicle
routes to attend new unforeseen tasks on time. Both sub-problems share the
same solution structure: an ordered sequence of tasks to be served per vehicle.
In the case of the TOPTW, the ordered sequence of tasks directly provides the
weighted number of tasks accomplished on time. In the case of the TAMCLP,
the sequence of tasks influences the objective function in a more indirect way.
Namely, given that we assume that the sites are represented in a complete
graph in the Euclidean plane, the sequence of tasks determines the locations
of vehicles at certain points in time, defining which sites are covered and
subsequently what is the inherent capacity of vehicles to serve unforeseen
tasks on time.

To combine the individual objectives we propose two approaches. The first
approach is by selecting the lexicographic solution for (Z

(j)
S1 , Z

(j)
S2 ) such that

from a set of alternative optimal solutions of the TOPTW the solution with
the highest value of Z

(j)
S2 is chosen (Ehrgott, 2005). The second approach is

by direct integration Z(j) = Z
(j)
S1 + Z

(j)
S2 ), calculating the weighted sum of

actual foreseen tasks been served and the expected capacity to serve the next
unforeseen task to be released.

The suitability of choosing a certain weighing value (i.e. α) will be studied
later in the experimental section. Our overall approach is to solve the SSTOP
by solving successively the C-TOPTW as follows.

We note that since any unforeseen task generated after TT−µ can not be able
to be served in a way that allows the base to be reached before the end of the
shift we assume that the release time of the last unforeseen task to be generated
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is before TT − µ. In the next sub-sections we present the formulations and
advantages of including each sub-problem in the C-TOPTW. The formulations
are general and valid for the start of the shift and for any re-scheduling action
needed thereafter.

3.1 Subproblem 1: The Team Orienteering Problem with Time Windows (TOPTW)

The objective of the TOPTW is similar to the objective of the Orienteering
Problem (OP), which has been classified as part of the TSP with Profits set
of problems (Feillet, 2005). The OP (Golden, 1987) is inspired by an outdoor
sport where the participants are equipped with a compass and a map and
have to visit a number of checkpoints displayed on the map. Each check point
has an associated score which is collected when a participant visits the check
point. The goal is to maximize the total score collected by visiting a number
of check-points within a limited time-span. Hence, the OP and the SSTOP
have certain similarities, where the relative importance of servicing a task is
equivalent to a reward and the limited time-span is equivalent to a shift length.

The OP can be further extended to incorporate time windows for each task.
We call this problem the Team Orienteering Problem with Time Windows
(TOPTW). It is important to observe that if we set the mean number of
unforeseen tasks per shift to zero (i.e. λ = 0) then no unforeseen tasks can
be generated in a shift. Then, solving the SSTOP is reduced to solving the
TOPTW.

To extend the OP to the TOPTW we review the existing variants of the OP.
The multi-vehicle version of the OP already exists in the literature and is
known as the Team Orienteering Problem (TOP) (Chao, 1996). Kantor and
Rosenwein (1992) developed a time-windows version (one time-window per
site) for the OP but the time windows refer to the end of the service time
rather than the start service time. Later, Nguyen and Gao (2003) extended
the possibility for several time-windows per site without requiring to create
artificial sites. However, both formulations of time windows consider deadlines
instead of starting servicing times. Hence we have to adapt existing formu-
lations and develop a new one. The formulation defined for every occurrence
(date) j ∈ J of the TOPTW is as follows using the notation introduced in
Section 2.

Known parameters:
LS(L(m)) : the location in the Eucledian plane of the site at which

task m ∈ TKj is to be accomplished
D(a, b) : the transfer time between two locations in the Euclid-

ian plane; a, b ∈ R2,
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D̂(m,n) : the transfer time between the location of two tasks in
the Euclidian plane; m,n ∈ TKj such that D̂(m,n) =
D(LS(L(m)), LS(L(n)))

Decision variables:

x
(k)
mn : 1, if task n ∈ TKj is scheduled at date j ∈ J imme-

diately after task m ∈ TKj ,
by vehicle k ∈ K such that n 6= m; 0 otherwise,

Derived values from x
(k)
mn :

zn : 1, if task n ∈ TKj is scheduled to be served; 0 other-
wise,

y
(k)
n : 1, if task n ∈ TKj is scheduled to be served by vehicle

k ∈ K;
0 otherwise,

a
(k)
n : the arrival time at site L(n) for n element of TKj by

vehicle k ∈ K.

s
(k)
n : the starting servicing time of task n ∈ TKj by vehicle

k ∈ K.
N ∈ TKj : artificial task that acts as final depot, located at the

base b ∈ I included in the set of sites I, so that L(N) =
b

o(j, k) ∈ TKj : artificial initial tasks for every vehicle k ∈ K at evalua-
tion instant j ∈ J such that ∆o(j,k) = 0 and wo(j,k) = 0
(i.e. the duration and weight of the task is zero),

eo(j,k) = lo(j,k) = LT
(k)
j (i.e. from Condition 4 of Def-

inition 1 the earliest allowable time and the latest al-
lowable time to start servicing must be equal to the
time at which the vehicle is ready to be scheduled for
instance j ∈ J) and

L(o(j, k)) = LL
(k)
j (i.e. the location of the provisional

depot is the same as the location of the vehicle at

t = LT
(k)
j ).

If j = 0 then, it means that the artificial task is lo-
cated at the base such that it starts from the base
L(o(0, k)) = b.

g
(k)
n : 1, if task n ∈ TKj is served by vehicle k ∈ K and

e
(k)
n ≤ akn.

The TOPTW problem with Z
(j)
S1 objective to be solved at evaluation instant

j ∈ J is then defined by the following mixed integer programming formulation,
where “M” represents a large number.
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maxZ
(j)
S1 =

∑
n∈TKj

∑
k∈K

wny
(k)
n (6)

s.t.∑
k∈K

y
(k)
n ≤ 1, ∀n ∈ TKj \ {N}, (7)∑

l∈TKj ,
l 6=m

x
(k)
lm =

∑
n∈TKj , n 6=m x

(k)
mn = y

(k)
m ∀m ∈ TKj\

{N}
⋃
{o(j, k), k ∈ K},∀k ∈ K, (8-9)

en ≤ s(k)n ≤ ln ∀n ∈ TKj , ∀k ∈ K, (10-11)

M(1− x(k)mn) ≥ s(k)m + ∆m + D̂(m,n)− a(k)n ∀m,n ∈ TKj : n 6= m,
∀k ∈ K, (12)

M(x
(k)
mn − 1) ≤ s(k)m + ∆m + D̂(m,n)− a(k)n ∀m,n ∈ TKj : n 6= m,

∀k ∈ K, (13)

e
(k)
n − a(k)n ≤M(g

(k)
n ) ∀n ∈ TKj , ∀k ∈ K, (14)

a
(k)
n − en > M(g

(k)
n ) ∀n ∈ TKj , ∀k ∈ K, (15)

s
(k)
n ≤ a(k)n +M(1− g(k)n ) ∀n ∈ TKj∀k ∈ K, (16)

s
(k)
n ≥ a(k)n −M(1− g(k)n ) ∀n ∈ TKj∀k ∈ K, (17)

s
(k)
n ≤ en +M(g

(k)
n ) ∀n ∈ TKj∀k ∈ K, (18)

s
(k)
n ≥ en −M(g

(k)
n ) ∀n ∈ TKj∀k ∈ K, (19)∑

k∈K

∑
n∈TKe,

n6=0

x
(k)
0n =

∑
m∈TKj ,
m6=N

x
(k)
mN = |K| (20)

s
(k)
0 = LT

(k)
j , s

(k)
N ≤ TT ∀k ∈ K, (21-22)

y
(k)
n ∈ {0, 1} , s(k)n ∈ [LT

(k)
j , TT ] ∀n ∈ T, ∀k ∈ K, (23-24)

x
(k)
mn ∈ {0, 1} ∀m,n ∈ TKj : n 6= m. (25)

The normalized objective (6) maximizes the weighted proportion of tasks ac-
complished on time. Constraints (7) assure that a task will be served by at
most one vehicle. Constraints (8-9) guarantee the connectivity for each path
a vehicle follows. Constraints (10) and (11) assure that any task n that is ser-
viced by a vehicle starts to be executed within the respective time windows.

To ensure that the TOPTW generates valid schedules for vehicles in accor-
dance with Condition 3 of Definition 1, constraints (12)-(19) have been in-
cluded. The set of constraints (12) and (13) force that if task m immediately
precedes task n (i.e. x(k)mn), then the arrival time of a task n must be exactly
equal to the starting time of the preceding taskm plus the time taken to service
task n and to transfer to task m. Hence, the relation an = sm+ ∆m+ D̂(m,n)
is forced by making the upper and lower bounds equal. Constraints (12) and
(13) allow s(k)m and a(k)n take any positive value if task n does not precede task
m in vehicle k route using the “big M” method, reducing the expressions to
−M ≤ sm + ∆m + D̂(m,n) − a(k)n ≤ M when task n does not follow task m.
The equality constraint is enforced when task n follows task m. Note also that
these constraints also eliminate the possibility of sub-tours as in this case, as
only one service time per task m is allowed to exist. The set of constraints (14)
and (15), use the “big” M method to determine if a vehicle arrives to a site
later than the earliest allowable time or not (i.e. a(k)n ≤ s(k)n ). Similarly, con-
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straints (14) to (19) force that the task is served as soon as possible when the
vehicle arrives on site. Constraints (14) and (15) define the indicator variable
g(k)n that determines whether a(k)n ≥ en or otherwise. The set of constraints
(16) and (17) assure that if a vehicle arrives later than the earliest allowable
time i.e. a(k)n ≥ en, then the vehicle is forced to start servicing the task as
soon as the vehicle arrives, i.e. s(k)n = a(k)n . Otherwise, constraints (18) and
(19) assure that if a vehicle arrives earlier than the earliest allowable time i.e.
a(k)n ≥ en, then the vehicle is forced to start servicing the task as early as the
earliest allowable time, i.e. s(k)n = en.

Next, constraint (20) ensures that the vehicles start and finish at the base.
Constraints (21) and (22) ensure that all vehicles start at their corresponding

liberation time, i.e., LT
(k)
j and finish within the termination time of the shift,

i.e. TT . Finally, constraints (23) to (25) define the domains of the decision
variables in the model.

3.2 Subproblem 2: The Time-averaged Maximum Coverage Location Problem
(TAMCLP)

In Section 3.1 it was shown that it is possible to identify which sites are covered
for servicing potential unforeseen tasks on time, suggesting that it is possible
to obtain a measure of the capacity of vehicles to serve unforeseen tasks on
time. A useful measure of the capacity for servicing potential unforeseen tasks
is the weighted proportion of sites that can be served by a vehicle on time if
an unforeseen task is released at a given point in time. In fact, for a given time
instant, weighted demand covered by the vehicles is equivalent to the objective
function of the Maximum Coverage Location Problem or MCLP (Church and
Revelle, 1974), which is used for locating emergency vehicles at certain bases
to cover possible sites that request emergency services. The difference with the
situation found in the SSTOP lies in the fact that emergency vehicles in the
MCLP serve emergency requests and then return to the base while vehicles in
the SSTOP follow a route and return to the base only when there are no more
tasks to perform. This means that the location in the SSTOP situation needs
to be constantly updated because a static situation as in the MCLP does not
exist.

Hence, by taking a representative number of “snapshots” of the system at
regular intervals of length ε it is possible to measure the instantaneous capac-
ity of vehicles to serve unforeseen tasks. Nonetheless, it is important to note
that this is only an approximation of the expected demand covered at each
snapshot as the vehicles’ position can only be tracked for known routes. As
unforeseen tasks may be released, the vehicles’ routes may be changed as a
result. As computing routes for all possible future unforeseen releases becomes
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intractable, we limit ourselves to computing the expected demand covered as-
suming that the vehicles routes remain unchanged. To qualify this assumption
we weight the coverage in a “snapshot” by the probability that the first un-
foreseen task may be released in the interval of such “snapshot” at a given
site. If the frequency of unforeseen tasks is sufficiently small, this one-look
ahead perspective of tracking current routes may cover most possibilities of
the SSTOP problem.

If we apply the concept of sampling MCLP objective values over time to the
example from Figure 1, we obtain a graph (see Figure ??) that shows the
proportion of sites covered by both solution sets at different time shots. In
this way, Figure ?? clearly shows that averaging over time Solution Set A
is less risky than Solution Set B by covering more sites during the shift. The
MCLP measured over time can be interpreted as a measurement of the quality
of coordination between vehicles. When vehicles are located further apart and
do not execute tasks simultaneously, there is less overlapping of coverage and
thus the vehicles can more efficiently cover sites for unforeseen tasks.
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Fig. 2. Weighted coverage over time per solution.

To devise a strategy for the SSTOP, we propose to measure the MCLP over
time and average it to construct a new time-dependent dynamic coverage prob-
lem: the Time-Averaged Maximum Expected Location Problem (TAMCLP).
In the next lines we present the general structure for the formulation of the
TAMCLP. It must be noted that due to the application of interpolation and
Euclidian distances in the formulation it is not possible to model it as a mixed
integer program. In addition we introduce an auxiliary variable STj to mark
the start at which coverage will be calculated given that different vehicles may
have different liberation times (i.e. {LT (k)

j : k ∈ K}).

The formulation uses the following variables.

16



Known parameters:

STj = mink∈K{LT (k)
j : k ∈ K} : the starting time at which coverage is to be

calculated at the jth evaluation episode,
ε : the time between discrete points in time,
TSj = dTT−µ−STj

ε
e+ 1 : number of time instants to evaluate in interval

[STj, TT − µ],
p : index identifying discrete point in time;

tp= εp+ STj, tp= t1 , .., tTSj

wi : the relative importance associated to each site i,
assuming that if an unforeseen task is generated

at this site it will have such a weight,
Derived values from x(k)mn
qip : 1, if at least one vehicle is covering site i at time

tp; 0, otherwise,

g
(k)
ip : 1, if vehicle k is covering site i at time tp; 0,

otherwise,
ρ(k)p : radius covered (in time units) by vehicle k at

time tp,
LV (p, k) = (X(k)

p , Y (k)
p ) : Location in the Euclidian plane of vehicle k ∈

K at time t = εp + STj . The coordinates are

described by X
(k)
p ∈ R and Y

(k)
p ∈ R,

We can then define the TAMCLP as follows, further detailed in Sections 3.2.1
to 3.2.4.

Zj
S2 =

∑TSj

p=1

∑
i∈I(e

−λp)(1− e−λε)qipwEvi (26)
s.t.

Determination of LK(k)
p constraints ∀k ∈ K, ∀p = 1, ...TSj (27)

Determination of ρ(k)p constraints ∀k ∈ K, ∀p = 1, ...TSj (28)

Determination of g
(k)
ip constraints ∀i ∈ I, ∀k ∈ K, ∀p = 1, ...TSj (29)∑

k∈K g
(k)
ip ≥ qip ∀i ∈ I,∀p = 1, ...TSj (30)

g
(k)
ip ∈ {0, 1} ∀i ∈ I, ∀k ∈ K, ∀p = 0, 1, ...TSj (31)
qip ∈ {0, 1} ∀i ∈ I,∀p = 0, 1, ...TSj (32)

ρ(k)p ∈ R, LC(k)
p ∈ R2, q(k)p ∈ [0, 1] ∀k ∈ K, ∀p = 0, 1, ...TSj (33-35)

All the variables of the TAMCLP formulation are derived from the sequence of
tasks scheduled per vehicle constrained by the TOPTW sub-problem. Thus,
the TAMCLP is structured in the logical sequence in which these variables
should be derived. An overview of this sequence is given as follows.

For calculating the average expected demand covered across time, it is first
necessary to track the guards’ locations at discrete points in time given by
constraints (27) given in Section 3.2.2. Next, given that the SSTOP conditions
for a valid strategy defined in Definition 1 imply that the actual area covered
per vehicle is time dependent, the coverage radius must be determined with
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constraints (28) given in Section 3.2.3. Having established the coverage radius,
it is then possible to identify whether a certain vehicle covers a certain site
as defined in constraints (29) given in Section 3.2.4. Then, in constraints (30)
if at least one vehicle covers a site, the site is considered to be covered and
used as input for the objective function in (26). Finally, constraints (31)-
(35) define the derived variables. Although all of these constraints can be
formulated in a standard mathematical programming format using the “big-
M” method, such formulations become highly complex given the number of
conditions involved for the constraints to be active. Hence, for clarity, we chose
to explicitly describe the conditions required.

3.2.1 TAMCLP Objective function

The normalized objective function of the TAMCLP (26) is based on that of the
Maximum Coverage Location Problem MCLP (Church and Revelle, 1974). In
effect, the TAMCLP objective function samples repeatedly at each snapshot,
p = 0, 1, ...TSj, estimating the expected weighted number of unforeseen tasks
covered for a [tp, tp+ 1) interval. We assume that the positions and state of a
vehicle remain unchanged in such an interval.

The expected weighted number of unforeseen tasks covered for a [tp, tp+ 1)
interval considers the probability that an unforeseen task will be generated in
such interval at a given site i ∈ I. This probability is in fact the probability
that an unforeseen task will be generated at any given interval i.e. (1−e−λε)vi
multiplied by the probability that no unforeseen task has been generated be-
fore, i.e. (e−λp). Although it may be the case that positions of vehicles remain
unchanged even after the arrival of an unforeseen task, we ignore such a pos-
sibility due to its difficulty to estimate a-priori. In addition, the probability
of releasing two or more unforeseen tasks for a sufficiently small ε interval is
considered to be negligible.

3.2.2 Determination of LK(p, k)

For tracking the vehicles positions over time given by LK(p, k)(k) = (X(k)
p , Y (k)

p )
as specified in constraints (27), we distinguish between two situations in which
a vehicle can be found (see Figure ??).

(1) The vehicle is at a site. Hence the coordinates of the vehicle correspond
to that of the site’s.

(2) The vehicle is transferring to serve a task at a site. Hence the coordinates
are linearly interpolated between the origin and the destination.
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Fig. 3. The status and coverage radius of vehicles according to a time line.

Therefore, for calculating X(k)
p we obtain the following relationship for ∀p =

0, 1, ...TSj such that εp+ STj ≥ LT
(j)
k , ∀k ∈ K (note that the calculation for

the Y -coordinate Y (k)
p is analogous):

X(k)
p =


Xm if

∃m,n ∈ TKj: n 6= m,
x(k)mn= 1, a(k)n ≤ tp ≤ s(k)n +∆n

Xm +
(tp − s(k)m −∆m)(Xn−Xm)

D̂(m,n)
if
∃m,n ∈ TKj: n 6= m,
x(k)mn= 1,s(k)m +∆m< tp ≤ an.

(36)

where:

Xm, Xn : X coordinates of locations L(m) and L(n), and

a(k)n : the arrival time of vehicle k for servicing task n such that

a(k)n = s(k)m +∆m+D̂(m,n).

Given Condition 4 of Definition 1 of what is a valid schedule, it may be the
case that at the time an unforeseen task is released one or more vehicles are
unable to be reassigned immediately to serve different tasks because at the
time of the evaluation instant j ∈ J . The reason for is that the vehicles may
be either travelling to serve an unforessen task (i.e. V S

(k)
j = 1) or serving a

task on site (i.e. V S
(k)
j = 2)). In case a vehicle k ∈ K is in such situation, it
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holds that εp + STj ≤ LT
(j)
k . For this reason, to track vehicles before all of

them can be reassigned immediately to serve different tasks it is necessary to
take into account information from the information set Ij that is derived from
past schedules.

For calculating LK(p, k) in these cases, we first define the coordinates of ve-

hicle k ∈ K at the time of the evaluation j ∈ J as: V L
(k)
j = X

(k)
V Lj, Y

(k)
V Lj

consistent with the notation introduced in describing the information set Ij.
Similarly, we also define the coordinates of vehicle k ∈ K at the earliest
allowable time that the vehicle can be rescheduled after evaluation instant
j ∈ J as: LL

(k)
j = X

(k)
LLj, Y

(k)
LLj. Thirdly, we define the arrival time at a site

where a previously scheduled (i.e. at instant j − 1 ∈ J) unforeseen task
has a vehicle either transferring to it or currently servicing without having
reached completion yet introducing a new variable, namely, AU

(k)
j such that

AU
(k)
j = D(LL

(k)
j , LV

(k)
j ) + LL

(k)
j . We introduce this variable to distinguish

whether a vehicle is servicing a task from a previous evaluation instant or not.
Hence, to calculate X(k)

p , ∀p = 0, 1, ...TSj such that εp + STj < LT
(j)
k ,

∀k ∈ K the following relationship is needed.

X(k)
p =

X
(k)
V Lj +

(εp+TSj−LT
(k)
j )(X

(k)
LLj−X

(k)
V Lj)

D(LL
(k)
j ,V L

(k)
j )

if εp+ TSj < AU
(k)
j ,

X
(k)
LLj if εp+ TSj ≥ AU

(k)
j .

(37)

3.2.3 Determination of ρ(k)p

To determine the coverage radius ρ(k)p as specified in constraints (28), we iden-
tify three possible situations that a vehicle k may encounter at tp= εp (see
Figure ??):

(1) Transferring or waiting to serve a foreseen task n ∈ F . The vehicle can be
immediately re-scheduled to serve another task and the coverage radius
corresponds to that of the standard response time.

(2) Servicing a foreseen or unforeseen task. The vehicle can only serve a new
task after it finishes servicing the task it currently is servicing and hence
has a reduced coverage area.

(3) Transferring to serve an unforeseen task n ∈ U . If we assume for simplicity
that ∆n ≥ δ, then the vehicle has an effective coverage of zero as it will
never finish servicing the unforeseen task early enough to be able to serve
the new unforeseen task on time.

Consolidating the three cases described above, we have that ρ(k)p is defined as

follows ∀p = 0, 1, ...TSj such that εp+ STj ≥ LT
(j)
k , ∀k ∈ K:
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ρ(k)p =



δ if
∃m,n ∈ TKj : n 6= m,x(k)mn= 1,
n∈ F, s(k)m +∆m≤ tp ≤ s(k)n

max(0, δ − (s(k)n +∆n−tp)) if
∃n ∈ TKj: y

(k)
n = 1,

s(k)n ≤ tp ≤ s(k)n +∆n

0 if
∃m,n ∈ TKj: n 6= m,x(k)mn= 1,

n ∈ U, s(k)m +∆m≤ tp ≤ s(k)n

(38)

As with tracking vehicles, the coverage radius should be adjusted for the case
that εp + STj ≥ LT

(j)
k so that the earliest time at which the vehicle k ∈ K

after the jth evaluation instant is considered. Hence, it follows ∀p = 0, 1, ...TSj
such that εp+ STj < LT

(j)
k , ∀k ∈ K that:

ρ(k)p = max{0,∆− (LT
(j)
k − εp+ STj)} (39)

3.2.4 Determination of g
(k)
ip

For determining if a vehicle k ∈ K is actually covering a site at a given time
step (i.e. g

(k)
ip = 1) as defined by constraints (29), two conditions are needed.

The first is that the vehicle is effectively able to cover the site in question, i ∈ I
given its coverage radius ρ(k)p . The second is that for a site to be considered to
be covered by a vehicle, such vehicle must be able to have sufficient time to
relocate to such a site to serve a hypothetical unforeseen task and return to
the base before the end of the shift in accordance to Condition 4 of Definition
1. Recalling that LS(i) = (Xi, Yi) defines the location of a site and LK(p, k)

the location of a vehicle, g
(k)
ip is determined by the following constraints for

∀i ∈ I \ {0},∀p = 0, 1, ...TSj, k ∈ K.

g
(k)
ip =

{
1 if ρ(k)p ≥ D(LK(p, k), LS(i))
0 if ρ(k)p < D(LK(p, k), LS(i))

(40)

TSj + εp+ ρ(k)p − δ + µ+D(LS(i), LS(0)) ≤ TT +M(1− g(k)ip ) (41)

3.2.5 Calculation example

In Table ?? we illustrate for the example from Figure 1 the coverage calculation
for Solution Set B at tp = 7.50 hrs. Note that “D(.)” is an abbreviation
for D((LK(p, k), (LS(i)). In addition, “≥ ρ(k)p ?” is an abbreviation for the
condition of whether the site is at a shorter distance from the vehicle than the
coverage radius as in constraints (40) indicating a 1, if the condition is met; 0
otherwise. Similarly, “≤ TT?” is an abbreviation of the condition depicted in
constraints (41), namely whether the vehicles can serve an unforeseen task in
such a site and return before the end of the shift.
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Table 5
Example for calculating coverage for Solution Set B at t=7.50 hrs.

λ = 1 ρ
(1)
p = 1.5

∆E = 7.5 ρ
(2)
p = 1.5 ∀i

TT = 12 (e−λp) = 0.4994 (a)
δ = 1.5 (1− e−λε) = 0.0452 (b)
wi = 100 ∀i (a)x(b) = 0.0226
vi = 0.167 ∀i

D(.) ≥ ρ(k)p ? ≤ TT? g
(k)
ip

i k = 1 k = 2 k = 1 k = 2 k = 1 k = 2 k = 1 k = 2 qip qipwivi

a 1.684 2.160 0 0 1 1 0 0 0 0.000
b 0.500 1.004 1 1 1 1 1 1 1 16.667
c 1.769 1.914 0 0 1 1 0 0 0 0.000
d 0.737 0.086 1 1 1 1 1 1 1 16.667
e 2.328 2.160 0 0 1 1 0 0 0 0.000
f 1.684 1.004 0 1 1 1 0 1 1 16.667

Coverage for time step:
∑

i∈I(e
−λp)(1− e−λε)qipwivi = 1.130

4 Solving the C-TOPTW

To solve moderately sized C-TOPTW problems (i.e. with two vehicles and
less than 20 tasks) each time a new problem instance is generated we first
generate a number of feasible solutions for the TOPTW (a sequence of tasks
to be performed by each vehicle) calculating the associated TOPTW scores
for each of them. Next, we track the vehicles’ paths of each solution at regu-
larly spaced discrete points in time to then calculate the TAMCLP associated
objective function of each proposed solution using the formulation in (26).
We consider two ways for integrating the TOPTW and the TAMCLP in the
C-TOPTW. One way is by finding the lexicographic optimum with the objec-
tive of the TOPTW as the primary one. The second way is by adding directly
the objectives of TOPTW and the TAMCLP, where the first objective is the
actual weighted number of foreseen tasks and the TAMCLP is a measure of
the expected weighted unforeseen task that can be served if a new unforeseen
task is released.

The main underlying idea of the presented heuristic structure is to take ad-
vantage of the fact that the TOPTW is more constrained than the TAMCLP.
For solving the TOPTW we first have to recognize that the computational
complexity of the TOPTW is at least as difficult as the OP which is already
NP-hard (Laporte, 1990). Hence, most of the approaches available in the lit-
erature to solve the OP and its derivatives are based on metaheuristics (see
Chao et al., 1996; Tasgetiren, 2002; Liang and Smith, 2006). Furthermore, the
relationship between the TOPTW and the TAMCLP is poorly understood.
As the purpose of this paper is to show whether including coverage consider-
ations (i.e. the TAMCLP) improves the quality of solutions for the SSTOP,
we choose a heuristic that is fast and simple, that can provide “good” solu-
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tions for the TOPTW and at the same time provides a diversity of alternative
solutions with a variety of TAMCLP reliability measures to choose from.

In this context, we construct “good” feasible plans by extending a stochastic-
based algorithm proposed by Tsiligirides for the Orienteering Problem (OP)
(Tsiligirides, 1984). Tsiligirides’ S-algorithm is based on devising a reasonable
measure of the desirability to append a task to an existing route by taking the
ratio between the reward collected and the extra distance needed to serve such
a task. The S-algorithm constructs a sequence of tasks by adding one task at a
time and making the probability of adding a certain task in a route dependent
on such desirability ratio. Therefore, the algorithm provides a certain direc-
tionality in the search for good “solutions” using a greedy approach, but also
allows for exploring neighborhood areas in the solution space by introducing
stochasticity. Tests by Tsiligirides’(1984) reveal a satisfactory performance in
solving the OP.

In this paper, we adapt Tsiligirides’ S-algorithm which has proven to have a
performance (Tsiligirides, 1984) for solving the TOPTW. Instead of the extra
distance required to service a candidate task, we use the extra time needed to
serve the candidate task in the denominator of the fitness function. In this way,
the time required for servicing a task and also the time required to wait at a
site for an earliest starting time en to occur are considered in the desirability
measure. Therefore, the further in the future the earliest allowable starting
time is, the lower the desirability is for appending such a task to the current
schedule. The fitness function is then defined as follows, where m is the last
executed task, which in a first step is equivalent to the artificial task (i.e.
o(j, k) = m) and n is the candidate task to be evaluated.

f(m,n) =

[
wn

max{s(k)m + ∆m +D(m,n) + ∆n, en} − s(k)m + ∆m +D(m,n)

]
3

(42)

A power of 3 is used in the fitness function in order to amplify the differences
between ratios, and bias further the probability of selecting tasks with higher
desirability ratios.

Another extension made to Tsilirigides’ S-algorithm is that of dealing with
more than one vehicle. In Chao et al. (1996), Tsiligirides’ S-algorithm is ex-
tended by scheduling the vehicles either sequentially or concurrently. The se-
quential construction of routes involves constructing first a route for the first
vehicle, then for the second and so on. In the concurrent approach, each ve-
hicle takes turns to add tasks to their routes. We propose to randomly select
the turn of a vehicle instead so as to further increase solution variety and do
not restrict the search solutions to concurrent type of routing sequences.

The logic of the extended algorithm is simple. First it is checked whether a task
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n can be feasibly added to the route of a vehicle k. Such feasibility depends
on the possibility of meeting the task deadline on time (i.e. start servicing the
task before the latest allowable starting time) and to have sufficient time to
return back to the base before the shift ends. Next, the fitness functions f(n)
are computed and then ranked. To limit the running time only four tasks are
considered for inclusion in the vehicles’ route (similar to Tsiligirides (1984)).
These tasks are referred to as members of the elite set, ES. Finally, task n∗

is selected based on the following probability.

P (n∗) = f(n∗)∑
n∈ES

f(n)
(43)

5 Simulation set-up

To study whether incorporating coverage considerations (i.e. embedding the
TOPTW in the TAMCLP) yield superior schedules for the SSTOP we de-
signed a series of simulation experiments(with 200 simulated shifts per exper-
iment) where we benchmark in each simulation run three suggested strategies.
Each time an unforeseen task is released, the information set of known tasks
and sites is updated and one of the selected strategies is used to reschedule
the vehicles paths. The first strategy consists of (re)solving the TOPTW; as
the TOPTW only considers known tasks, it is used as a base to compare it
to other strategies. We refer to this strategy as simply the (TOPTW) base
strategy. The other two strategies consider stochastic information of the gen-
eration of unforeseen tasks. The second strategy is to solve a multi-objective
problem of the TOPTW and the TAMCLP by selecting a lexicographic opti-
mum solution of both problems (i.e. selecting a solution that maximizes the
TAMCLP among alternative optima of the TOPTW). We refer to this strat-
egy as the (C-TOPTW) lexicographic strategy. The third strategy, integrates
the TOPTW and TAMCLP objectives with an affine combination that assigns
equal weights to both objectives, selecting the optimum of such affine combi-
nation. We refer to this strategy as the (C-TOPTW) integration strategy.

The performance of the three strategies are tested in four scenarios. These
scenarios have certain parameters in common for ease of comparison (see Table
??). However, to obtain independent confirmation of simulation results, the
four scenarios differ in four key variables (see Table ??): the distribution of
sites in the Euclidian space (i.e. type A and B shown in Figure ??), the
arrival rate of emergencies that generate unforeseen tasks (i.e. Scenario 4 has
a higher arrival rate) and whether the probability of released unforeseen tasks
is equal for every site or not (i.e. Scenario 3 has heterogenous arrival rates
per site). The scenarios were checked to verify if a-priori alternative optimal
solutions of the TOPTW may yield different values of the TAMCLP objective
function as shown in Table ??. This means that different levels of risks exist
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Table 6
Common parameters in simulation experiments
Number of vehicles, |K| 2
Number of sites, |I| 12
Number of foreseen tasks, |F | 12
Maximum weight possible of foreseen tasks,

∑
n∈F 100

Weigh of unforeseen tasks, n ∈ U 100
Shift length in time units, TT 100
Duration of foreseen tasks in time units, ∆n, n ∈ F Max: 8 Median: 4.5 Min: 3.5
Duration of unforeseen tasks in time units, µ 7.5
Response time in time units, δ 7.5
Time windows: earliest allowable time, en Generated by U(0, 40)
Time windows: latest allowable time, en Generated by U(70, 100)
Number of shifts simulated per scenario 200
Time between “snapshots” in time units, ε 1
Number of generated solutions per (re-)scheduling in-
stance

4000

Table 7
Scenarios description

Scenario Layout type Alarm intensity Site risk Z
(j)
S1

Z
(j)
S2

Max Average Min

1 A 1 Homogeneous 100 47.63 40.58 30.27
2 A 1 Heterogeneous100 49.51 39.78 27.88
3 B 1 Homogeneous 100 50.25 40.66 30.27
4 B 2 Homogeneous 100 70.82 57.29 46.07

among alternative optima and thus may yield different expected results for
the SSTOP.

Note that because the purpose of the experiments is to explore the possibility
of embedding coverage considerations in the strategies devised for the SSTOP,
these are kept computationally simple. Only twelve sites (each with one fore-
seen task) and two vehicles are considered. The running time of a day shift
simulation with on average 1 unforeseen task generated is 2.5 minutes run-
ning on a Intel i5 Core processor. In addition, emergency events are rare and
important. Thus, a maximum mean number of unforeseen tasks per shift (i.e.
λ) of two (see scenario 4) with a weight equal to the sum of all the foreseen
tasks available is set. A few initial runs were also made prior to this so as to
assure that all the foreseen tasks may be served a-priori within the duration
of a shift with a certain time to spare to still be able to service at least two
unforeseen tasks per shift as would occur in desirable operating conditions.

6 Results

We ran 200 simulated shifts for each strategy and each scenario. Table ??
shows a summary of the results of these simulations. The results show that
across four scenarios that the two strategies that incorporate coverage consid-
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erations (i.e. lexicographic and integration strategies) have a significant better
capability of being able to service unforeseen tasks on time.

Table 8
Summary of results of simulation experiments(F :Foreseen tasks, U : Unforeseen
tasks)
a. Mean fulfillment yield at the end of shift (i.e. Ψ̄)

Base Lexicographic Integrated
Scenario F U F ∪ U F U F ∪ U F U F ∪ U

1 99.48 61.00 160.48 99.78 72.00 171.78 99.67 72.50 172.17
2 99.73 49.50 149.23 99.62 62.00 161.62 99.69 63.50 163.19
3 99.63 58.50 158.13 99.62 68.00 167.62 99.69 72.00 171.69
4 98.92 115.50 214.42 98.87 130.00 228.87 99.14 126.00 225.14

b. P-values for pairwise 1-tailed t-test comparisons of weighted score collected

Scenario
Lexicographic vs. Integration vs. Integration vs.

Base Base Lexicographic
F U F ∪ U F U F ∪ U F U F ∪ U

1 0.0489 0.0032 0.0023 0.1426 0.0030 0.0025 0.2091 0.4331 0.4471
2 0.1940 0.0005 0.0005 0.3940 0.0001 0.0001 0.2412 0.2825 0.2709
3 0.4610 0.0032 0.0030 0.3213 0.0001 0.0001 0.3052 0.0513 0.0462
4 0.4288 0.0017 0.0014 0.1940 0.0250 0.0212 0.1167 0.1630 0.1779

c. Counting comparisons of performance

Scenario
Lexicographic vs. Integration vs. Integration vs.

Base Base Lexicographic
F U F ∪ U F U F ∪ U F U F ∪ U

1
Better 14 38 46 12 38 47 4 16 18
Same 181 143 135 182 143 133 191 168 163

Worse 5 19 19 5 19 19 5 16 19
2

Better 5 38 41 6 34 39 5 15 19
Same 189 147 142 188 157 150 191 173 168

Worse 6 15 17 9 15 17 4 12 13
3

Better 10 28 35 7 33 39 9 14 23
Same 182 160 150 188 158 150 184 179 166

Worse 8 12 15 10 12 15 7 7 11
4

Better 19 50 59 20 50 59 19 25 34
Same 161 125 108 164 118 104 169 146 131

Worse 20 25 33 25 25 33 12 29 35

We used pairwise t-test comparisons as recommended by Law and Kelton
(1998) to compare policies in a simulation environment. The results show that
the C-TOPTW lexicographic strategy significantly served more unforeseen
tasks than the TOPTW base strategy at significance levels of p < 0.005 for all
the scenarios tested. Similarly, the direct integration approach yielded similar
significance levels of outperforming the base strategy in servicing unforeseen
tasks except for Scenario 4 where it still outperforms the base case but at a
significance level of p < 0.05. The reason for such drop in significance levels for
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Scenario 4, may have to do with the lower statistical power of the experiment
as the alarm rate is doubled and the variability of results increases. The t-test
comparisons is illustrated with the count comparisons in part c) of Table ??.
For every scenario, both strategies considering coverage are able to service
more unforeseen tasks in more than twice the number of shifts compared to
the base strategy.

At the same time, the results show similar results in servicing unforeseen
tasks for both coverage based strategies (i.e. C-TOPTW lexicographic and
C-TOPTW direct integration). This result may stem for the fact that for
the direct strategy to outperform the lexicographic strategy it requires that
there exist cases in which not servicing a foreseen task can be traded-off with
better TAMCLP values that yields a higher expected number of weighted
unforeseen tasks covered. For this to be the case, either the importance of
the unforeseen tasks should be higher and/or the rate of unforeseen tasks
should be higher. In either way, the variance on the results of the experiments
requiring longer simulation runs to be able to observe such effects. Moreover,
from an operational perspective having to trade-off servicing foreseen task for
a future unforeseen task is undesirable as it means that not enough slack is
built on the service system to be able to service all foreseen tasks.

In the case of the capacity for servicing foreseen tasks, no significant difference
was found for all the scenarios across the three strategies evaluated. The reason
for this absence of significance differences is related to the same reason why
the C-TOPTW lexicographic and C-TOPTW direct integration strategies do
not differ significantly in handling unforeseen tasks: enough slack time was
added to the shift duration such that servicing unforeseen tasks could be done
without having to sacrifice servicing a foreseen task.

By observing specific solutions in the Euclidian plane as depicted in Figure ??,
we can also derive an important qualitative observation about incorporating
coverage considerations into routing problems. In Figure ?? we show solutions
in the two layouts used with “snapshots” at the time each unforeseen task is
released and at the end of the shift. Consider for example, the solution depicted
for Layout B in Figure ??. At time t = 5.2 an unforeseen task is released
located where the triangle is. By observing the snapshot at time t = 46.7
we see what decision was taken at t = 5.2 to service such unforeseen task.
Whereas Vehicle 1 travels backward to service the unforeseen task, Vehicle
2, reschedules its original foreseen task and to serve another task located at
another position. This is an illustration of how routes consider coverage, as in
effect, Vehicle 2, is re-allocating to a more central position (instead of going
to the original extreme position), not because this is more efficient for a route,
but because it can then cover a greater number of sites. In this way, including
the coverage objective helps to coordinate the position of vehicles to minimize
the risks of not servicing an unforeseen task released in the future. Later,
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Fig. 4. Two simulation runs for different layouts

Vehicle 1 avoids servicing a near-by site and instead, travels further upwards
towards the site located at (3.5, 12). In this way, the system avoids having both
vehicles servicing at the same time, and having at least one vehicle partially
covering covering sites for potential unforeseen tasks. This emphasizes that
coverage is not only about coordinating vehicle positions but also the timing
at which these are available for unforeseen tasks.

7 Conclusions

The SSTOP applied to service engineering is a new approach focusing on ser-
vice quality rather than on costs through the consideration of specific service
deadlines and response times required by clients. In addition to information
about known tasks, we have also used in this paper incomplete information
about possible unforeseen tasks. Moreover, it was shown that by tracking the
position and state of each vehicle it is possible to devise a measure of reliabil-
ity of constructed routes. We have observed that improvements in reliability
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can be made by choosing among alternative equivalent optima of the TOPTW
problem or at the expense of the performance of the known tasks. Through
simulation experiments we observed that incorporating coverage considera-
tions via the TAMCLP, improvements can be achieved making it possible to
serve more unforeseen tasks on time.

Further investigation is required to distinguish the best way to best combine
the TAMCLP and the TOPTW objectives in solving the SSTOP. The SSTOP
can be further extended by adding the possibilities of delays at sites without
immediate re-allocation to serve other tasks. Increased control on the vehicles’
path may add new possibilities to obtain higher route reliabilities. Other pos-
sible extensions for the SSTOP include the use of individual response times,
multiple traveling speeds and stochastic travelling times.
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