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Abstract – Probabilistic or stochastic programming is a framework for modeling optimization problems that involve 

uncertainty. Stochastic programming models arise as reformulations or extensions of reliability optimization 

problems with random parameters. Moreover, the resource elements vary and it is reasonable to consider them as 

stochastic variables. In this paper, we describe the chance-constrained reliability stochastic optimization (CCRSO) 

problem for which the objective is to maximize the system reliability for the given joint chance constraints where 

only the resource variables are random in nature and which follow different general form of distributions. Few 

numerical examples are also presented to illustrate the applicability of the methodology. 

 

Keywords – Chance-constrained programming, reliability optimization, joint constraints, general form of 

distributions. 

 

 

1. INTRODUCTION 

 

Stochastic programming (SP) models were first formulated by Dantzig (1955) who suggested a two-stage 

programming technique that involves the conversion of SP models into their equivalent deterministic programming 

models. However, this technique suffers from the limitation that it does not allow any constraint to be violated even 

at a specific probability level. This gave rise to the concept of chance-constrained programming (CCP), where 

constraints containing random variables are guaranteed to be satisfied with a certain probability. Charnes and 

Cooper (1959, 1963) developed the concept of CCP. For the interested reader, notable contributions to the field can 

be found in Kataoka (1963), Van De Panne and Popp (1963), Charnes, Cooper, and Thompson (1964, 1965), 

Charnes, Kirby, and Raike (1967), Williams (1965, 1966), Naslund (1966), Wets (1966), Symonds (1967), Ziemba 

(1970), Lee and Olson (1985), Olson and Swenseth (1987), Seppala (1988), Shapiro (1990), Weintraub and Vera 

(1991), Flam and Schult (1993), Schoen (1994), Zhao and Ziemba (2001), Beraldi and Bruni (2010), Cheng and 

Lisser (2012, 2013), and Kucukyavuz (2012). Joint probabilistic constraints for independent random variables were 

used initially by Miller and Wagner (1965) and Jagannathan (1974). Charles and Dutta (2005) also derived the 

deterministic equivalent of the objective function and constraint coefficients with normal random variables. The 

properties of stochastic programming problems and methods for obtaining an optimal solution were described in 

Sengupta and Fox (1969), Tintner and Sengupta (1972), Vajda (1972), Rao (1989), Kall and Wallace (1994), 

Prékopa (1995) and Birge and Louveaux (2011). In this regards, a bibliography was provided by Stancu-Minasian 

and Wets (1976).  

Reliability is defined as the probability that a device or system is able to perform its intended functions 

satisfactorily under specified conditions for a specified period of time. However, traditional reliability assumes that 

a system and its components can be in either a completely working or a completely failed state only (Birnbaum, 

Esary, & Saunders, 1961), i.e., no intermediate states are allowed. A reliability-based methodology for the robust 
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optimal design of uncertain linear structural systems subjected to stochastic dynamic loads was also presented by 

Papadimitriou, Katafygiotis, and Siu (1997) and Papadimitriou and Ntotsios (2004).  

Solution methods in the literature for reliability optimization of complex systems are mainly heuristic 

methods. In recent years, metaheuristic algorithms such as genetic algorithm (Gen & Cheng, 1997), simulated 

annealing (Ravi, Murty, & Reddy, 1997), and Tabu search (Glover & Laguna, 1993) have also been applied to 

reliability optimization of complex systems. A comprehensive review of heuristic and metaheuristic algorithms for 

reliability optimization can be found in a relatively recent survey paper (Kuo & Prasad, 2000). Exact methods for 

reliability problems include the branch-and-bound methods (Nakagawa, Nakashima, & Hattori, 1978; Tillman, 

Hwang, & Kuo, 1980), dynamic programming methods (Ng & Sancho, 2001; Sniedovich & Vazirinejad, 1990), and 

implicit enumeration methods (Misra & Sharma, 1991; Prasad & Kuo, 2000). For a more comprehensive view of the 

research works undergone in the field of reliability optimization for the past four decades, we refer the interested 

readers to the following authors, whom we found to provide useful insights: Aggarwal, Gupta, and Misra (1975), 

Aggarwal (1976), Tillman, Hwang, and Kuo (1977a,1977b), Kuo, Hwang, and Tillman (1978), Tillman et al. 

(1980), Hwang, Tillman, and Lee (1981), Painton and Campbell (1995), Sung and Cho (1999), Kuo and Prasad 

(2000), Ravi, Reddy, and Zimmermann (2000), Kuo, Prasad, Tillman, and Hwuang (2001), Sun, Mckinnon, and Li 

(2001), Sun and Li (2002), Zhao and Liu (2003), Coit, Jin, and Wattanapongsakorn (2004), Cui, Kuo, Loh, and Xie 

(2004), Liang and Smith (2004), Ramirez-Marquez, Coit, and Konak (2004), Zafiropoulos and Dialynas (2004), 

Aggarwal and Gupta (2005), Marseguerra and Podofillini (2005), Gen and Yun (2006), Ha and Kuo (2006a, 2006b), 

Kuo and Wan (2007), Onishi and Kimura (2007), Ramirez-Marquez and Coit (2007), Yadavalli, Malada, and 

Charles (2007), Zhao, Cui, and Kuo (2007), Coelho (2009), Chan and Lin (2011), Minguez, Conejo, and 

Garcia-Bertrand (2011), Nikolaidis and Mourelatos (2011), and Sakalli (2014). 

The redundancy allocation problem (RAP) is a difficult combinatorial optimization problem (Chern, 1992). 

It was extensively studied in the past, and when considering binary components, it was solved as a single objective 

optimization problem (generally maximization of system reliability), subject to several constraints, such as cost, 

weight, and volume, among others. It was solved using mathematical models, such as dynamic programming 

(Bellman & Dreyfus, 1958; Misra, 1971; Fyffe, Hines, & Lee 1968), integer programming (Bulfin & Liu, 1985; 

Misra & Sharma, 1991), mixed integer and non-linear programming (Tillman et al., 1977a, 1977b), and 

metaheuristics, such as genetic algorithms (Coit & Smith, 1996; Ida, Gen, & Yokota, 1994; Painton & Campbell, 

1995), Tabu search (Kulturel-Konak, Smith, &Coit, 2003), and ant colony optimization (Liang & Smith, 2004). 

This paper is organized as follows: first, the literature review is presented in section 1. In section 2, the 

mathematical model of a stochastic integer programming of an n-stage series system with m-joint chance constraints 

problem is defined and its deterministic equivalent form is derived. Moreover, some general form of distributions 

and their various deductions are discussed in section 3. Few numerical examples are then presented in section 4 and 

section 5 concludes the paper. For the interested reader, a more detailed analysis and further information in this 

regards can be found in the work undergone by Ansari (2011). 

 

 

2. STOCHASTIC INTEGER PROGRAMMING: N-STAGE SERIES SYSTEM WITH M-JOINT 

CHANCE CONSTRAINTS 

 

The chance-constrained programming problem for an n-stage series system with m-joint chance constraints 

can be formulated as:  

    



n

j

x

js
jrXRMax

1

11
                                                                          (1)                                     

subject to 

       ,,...,, 2211 pbxgbxgbxgP mm                                      

,,...2,1,1 njx j                                                                                   
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where  

 XRs
- Reliability of the system 

jj qr , - Reliability, unreliability of components j ; 1 jj qr  

jx - Number of components used at stage j  

 xg i
- Chance constraint i  

ib - Amount of resource i  available (random) 

10  p , usually close to 1. 

The joint chance-constraints of System (1) may also be written as   ,
1

pybP
m

i

ii 


 

where  xgy ii  . Hence System (1) has the following form: 

    



n

j

x

js
jrXRMax

1

11                                                                           (2)                                      

subject to 

  ,
1

pybP
m

i

ii 


                                    

.,...2,1,1 njx j 
 

                                                                            

3. VARIOUS SPECIAL CASES FOR JOINT CHANCE CONSTRAINTS 

Case 1: In System (1), let ib  follows a general form of distributions      iC
iiii BbhAbF 1  

It is given that the thi  random variable ib  has three known parameters  0iA ,  0iB  and  0iC  such 

that     1,0  ii FF   and  ibh  is a monotonic, continuous, and differentiable function of ib  in the interval

 ii  , . The probability density function (pdf) of the random variable ib  is given by  

      i
C

iiiiii bhBbhACAbf i 
1

                                                            

 (3)   

Now, for the above pdf the joint probabilistic constraints in System (1) can be written as: 

     pdbbhBbhACA
m

i y

ii

C

iiiii

i

i

i 













 





1

1



 (4) 
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After integration, we have:    

   ,
1

pByhA
m

i

C

iii
i 



   as    .0 iC

iii BhA                                                    

Hence, for the given random variable, the joint chance constraints System (2) are converted into joint deterministic 

constraints as follows: 

   pByhA
m

i

C

iii
i 

1
                                                                           (5)      

 

The deterministic constraints may get the information from the following distributions when the latter follow the 

parameters   :,,, iiii bhCBA  

Power Function distribution






 ia
i

ia
i b,1,1, , Pareto distribution 





   ia

iii
i

i ba ,,0, 1


, Beta distribution 

of first kind    1
,,0,1


 iiiii ba  , Weibull distribution 

11,0, ,
ai

i ib

i i e
   

 
, Inverse Weibull 

distribution 1,1,1,
ai

i ib
e




 
 

, Burr Type II distribution   









 ik
ib

e1,1,1,1 , Burr Type III distribution 

  i
i

k

ib





1,1,1,1 , Burr Type IV distribution    









 i

i
k

iii bb



111,1,1,1 , Burr Type V distribution 

  i
i

kb

ie



tan

1,1,1,1  , Burr Type VI distribution   i
ii

kbk

ie



sinh

1,1,1,1  , Burr Type VII distribution 

  ik
i

ik
btanh1,1,1,2 


, Burr Type VIII distribution   










 ik
ib

e11 tan,1,1,2 , Burr Type IX 

distribution     i
i

kb

ii e


 1,1,5.01,5.0  , Burr Type X distribution    ik

ib2exp1,1,1,1  , Burr 

Type XI distribution   1
1,1,1, 2 sin 2

ik

i ib b 
 

 
  

, Burr Type XII distribution 




  ia

iii bm ,,1, , and 

Cauchy distribution  ib11 tan,1,5.0,  . 

Hence, in this case, the deterministic form of the chance-constrained programming problem for n-stage series with 

m-joint chance constraints is given by: 

    

  

.,...2,1,1

,

11

1

1

njx

pByhA

tosubject

rXRMax

j

m

i

C

iii

n

j

x

js

i

j















                                                    (6)     
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After inserting the particular value of the parameters   iiii bhCBA ,,,  in the above deterministic constraints, we 

get different deterministic constraints for different distributions. 

Case 2: In System (1), let ib  follows general form of distributions      i
C

iii BbhAbF i 


 

The thi  random variable ib  is acknowledged to have three known parameters iA , iB  and 
iC . These parameters 

are defined as  0iA ,  0iB   and  0iC
 
and the following conditions apply:     1,0  ii FF   and 

 ibh  is a monotonic, continuous and differentiable function of ib  in the interval  ii  , . In this context, the pdf 

of the random variable ib  is given by: 

      .1

i

C

iiii bhbhCAbf i 


                                                                                     (7)                      

Now, the joint chance constraints in System (2) for the above pdf can be written as: 

     pdbbhbhCA
m

i
y

ii

C

iii

i

i

i 




  





1

1

               (8) 

The integration leads to:    

    ,1
1

pByhA
m

i

i

C

ii
i 




   as    .0



i

C

ii BhA i                                                   

As such, for the given random variable, the following joint deterministic constraints can be obtained from the 

conversion of the joint chance constraints in System (2):  

    .1
1

pByhA
m

i

i

C

ii
i 





                                                             (9)                 
 

The deterministic constraints may obtain the information from the distributions listed below when the latter follow 

the parameters   :,,, iiii bhCBA  

Power Function distribution
1,0, ,i ia

i i i ia b
     , Pareto distribution 

1,1, ,i ia

i i i ia b
     , Beta distribution 

of first kind  11,1, , 1 i

i i ia b


    
 

, Weibull distribution 
11,1, ,

ai
i ib

i i e
   

 
, Inverse Weibull distribution 

11,0, ,
ai

i ib

i i e
 


 

 
, Burr Type II distribution  11,0, , 1

i
ib

i ik e


  
  

, Burr Type III distribution 

  i
i

iii bk
  1,,0,1 1

, Burr Type IV distribution   






















 
i

i

iiiii bbk





111 1,,0,1 , Burr Type V 

distribution   i
ib

iii ek


 tan1 1,,0,1
  , Burr Type VI distribution   i

ii bk

iii ek


 sin1 1,,0,1
  , Burr Type 

VII distribution  12 ,0, , 1 tanh iik

i i ik b


   
 

, Burr Type VIII distribution 
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   1 1 12 ,0, , tan
ii

i
k

b

i ik e


    
  

, Burr Type IX distribution   






 

i
i

i

i

kb

ii e


 21,,1,2 1
, Burr 

Type X distribution  
2

11,0, , 1
i

ib

i ik e


  
 

  
, Burr Type XI distribution 

  111,0, , 2 sin 2
i

i i i ik b b


  
 

 
  

, Burr Type XII distribution  11,1, , 1
i

ia

i i i im b


   
  

, and Cauchy 

distribution  1 1 1,0.5, , tan
i

i ib


    
  

.  

Hence, in this case, the deterministic form of the chance-constrained programming problem for n-stage series with 

m-chance constraints is given by: 

    

  

.,...2,1,1

,1

11

1

1

njx

pByhA

tosubject

rXRMax

j

m

i

i

C

ii

n

j

x

js

i

j

















                                          (10)                
 

By introducing the particular value of the parameters   iiii bhCBA ,,,  in the above deterministic constraints, we 

then obtain different deterministic constraints for different distributions.   

Case 3: In System (1) let ib  follows general form of distributions    ii bhA
ii eBbF


1  

In this case, it is assumed that that the thi  random variable ib  has two known parameters iA , iB . iA and iB
 
are 

such that  0iA  and  0iB   and     1,0  ii FF   . Moreover, in the interval  ii  , ,  ibh  is a 

monotonic, continuous, and differentiable function of ib . The pdf of the random variable ib  is then defined by:  

     i

bhA

iii bheBAbf ii 
                                                                                   (11)                            

Now, the below represent the joint chance constraints (2.4) for the above pdf: 

    pdbbheBA
m

i
y

ii

bhA

ii

i

i

ii 




  





1



              (12) 

The following is obtained after integration:    

 
,

1

peB
m

i

yhA

i
ii 




   as    0 iC

iii BhA                                                    

The below joint deterministic constraints are then derived from the conversion of the joint chance constraints in 

System (2) for the given random variable: 
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 
.

1

peB
m

i

yhA

i
ii 





                                                                                          (13)                                   
 

When the subsequent specified distributions follow the parameters   iii bhBA ,, , the deterministic constraints 

may contract the information from these distributions: 

Exponential distribution  ii b,1, , Rayleigh distribution  2,1, ii b , Weibull distribution 




 ia

ii b,1, , Pareto 

distribution   i

a

ii ba i ln,, , Lomax distribution   11ln,1,  iii ba  ,  Beta distribution of first kind 

   1
ln,1,


 iiiii ba  , Beta distribution of second kind   ib1ln,1,1 , Extreme Value I distribution 

 ib
e,1,1 , Log logistic distribution   ib1ln,1,1 , Burr Type IX distribution 

   15.015.0ln,1,1  i

kb

i

i
ie  , and Burr Type XII distribution   ia

iii b 1ln,1, . 

In consequence, the chance-constrained programming problem for n-stage series with m-chance constraints can be 

found in its deterministic form, defined as follows: 

    

 

.,...2,1,1

,

11

1

1

njx

peB

tosubject

rXRMax

j

m

i

yhA

i

n

j

x

js

ii
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                                                 (14)                 
 

Last, but now least, different deterministic constraints for different distributions can be obtained after inserting the 

particular value of the parameters   iii bhBA ,,  in the above deterministic constraints. 

 

 

4. NUMERICAL EXAMPLES 

 

Example 1: (for case 1) 

We have the following stochastic problem: 
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where 1b  follows a Weibull distribution with parameters 41,151  a ; 2b  follows a Beta distribution of first 

kind with parameters 5,15,10   a ; and 
3b  follows a Power Function distribution with parameters 

.10,12  a  

The deterministic model of the above stochastic problem is as follows: 
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In order to obtain the reliability of the system, the above 3-stage series with 3-chance constraints problem is solved 

using the LINGO software.  The results show that the reliability of the system is 
sR = 0.9998, at 

1x =6, 
2x =5, and 

3x

=5. 

 

Example 2: (for case 2)     

 

This second example builds upon the following stochastic model: 
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where, in this case, 
1b  follows a Pareto distribution with parameters 5,10  a ; furthermore, 

2b  follows a 

Weibull distribution with parameters 31,201  a ;
 3b  follows a Burr type IV distribution with parameters 

10,6  k ; and 
4b  follows a Burr type IX distribution with parameters 31,201  k . 

In this case, the deterministic model of the above stochastic problem becomes as follows: 



CENTRUM Católica’s Working Paper No. 2014-01-0005 
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We now have  a 3-stage series but with 4-chance constraints problem that we solve by means of employing the LINGO 

software and we obtain the reliability of the system, that is, 
sR = 0.9983, at 

1x =3, 
2x =4, and 

3x =3. 

 

Example 3: (for case 3)  

 

For our final example, we have the following stochastic problem: 
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where 1b  follows a Burr type XII distribution with parameters 92,101,151  a ; 2b  , on the other hand, 

follows a Beta distribution of first kind with parameters 7,10,15   a ; 3b  follows a Lomax distribution 

with parameters 51,6  a ; and, finally, 4b  follows a Pareto distribution with parameters 5,9  a . 

The transformation of the above stochastic problem leads to obtaining the following deterministic problem:  
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The LINGO software is used once again to solve the above 5-stage series with 4-chance constraints problem  and the 

reliability of the system is obtained, that is, 
sR = 0.9979, at 

1x =5, 
2x =3, 

3x =7, 
4x =4 and 5x =3. 

 

 

5. CONCLUSION  

 

In this paper, we formulate the chance-constrained reliability stochastic optimization problem for optimal 

solution to an n-stage series system with m-joint chance constraints in which only resource variables are random in 

nature. Various cases have been discussed with different general form of distributions when resource variables are 

random in nature and have different general form of distributions. After formulating the problem, we solved it using 
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the LINGO software. One of the limitations of the study is that the current approach to tackle the problem assumes 

that only the right hand sides of the constraints are random in nature; simultaneously studying the case in which one 

can introduce randomness on the left hand side of the joint chance constraints and also in the objective function 

separately or combined, which is used to measure system performances such as mean system-life time,  -system 

lifetime and system reliability; many real life engineering problems actually do have multiple objectives, i.e., 

minimizing the cost, maximizing the performance, maximizing the reliability, and so on, subject to satisfying several 

requirements. Taking the lead from this, and in line with Charles and Udhayakumar (2012) and Charles, 

Undhayakumar, and Rhymend Uthariaraj (2010), the present work may be extended to multi-objective reliability 

optimization problems with constraints having finite probability being violated, as well as may be extended to solve 

the proposed systems using hybrid algorithms. 
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Proposition 1: System (A1) is a complement of System (6).  

In System (1) if ib  follows a general form of distributions      iC
iiii BbhAbF  then with the similar 

argument of Case 1, we shall obtain the following System (A1) 
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                                                     (A1)
 

After inserting the particular value of the parameters   iiii bhCBA ,,,  in the above deterministic constraints, we 

get different deterministic constraints for the various distributions listed below: Power Function distribution 

 ii

iiii ba
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Proposition 2: System (A2) is a complement of System (10).  

In System (1) if ib  follows a general form of distributions    ii bhA
ii eBbF


  then with the similar argument of 

Case 2, we shall obtain the following System (A2) 
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                                                           (A2)  
 

After inserting the particular value of the parameters   iiii bhCBA ,,,  in the above deterministic constraints, we 

get different deterministic constraints for the various distributions listed below: Inverse Weibull distribution 
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